GMAT数学的排列组合
来源:哈鲁教育 2014-12-29
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法。
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合。
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的。
[反思] 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志。
简单举例:1、2、3挑两个组成一个数字和1、2、3挑两个数字是完全不一样的!1、2、3挑两个组成一个数字那是排列;1、2、3挑两个数字那是组合。例如我选1和2,排列里面12和21是两个数字!但是组合的话挑1和2就和挑2和1没有分别!!!
- • 港科大&清华联手推出计算机科学“3+1+X”项目,本硕博无缝衔接!
- • 【哈鲁2026录取】重磅!澳门科技大学博士录取到!
- • “捡漏”!港浸会26fall新增影视艺术与创作实践艺术硕士,接受六级!
- • 【哈鲁2026录取】香港大学教育学硕士offer到!
- • 【哈鲁2026录取】澳门大学硕士offer+3,数据科学、教育学& TESOL录取到!
- • 【哈鲁2026录取】爱丁堡大学银行创新与风险分析硕士offer到!
- • 【哈鲁2026录取】墨尔本大学信息技术硕士offer到!
- • 小语种留学首选!港大文学院26fall再增三个硕士项目,已开放申请!
- • 【哈鲁2026录取】伯明翰大学市场营销硕士offer到!
- • 加州大学欧文分校26fall新增科学应用人工智能硕士,已开放申请!
- • 【哈鲁2026录取】曼彻斯特大学金融学硕士offer到!
- • 【哈鲁2026录取】GPA85+获纽约大学计算机工程硕士offer!



